Zur Ermittlung und rechnerischen Überprüfung thermodynamischer Daten aus experimentell gefundenen Werten, 5. Mitt.¹:

Rechnerische Behandlung des Systems Wasser(1)/Aceton(3)

Von

F. Gölles*

Aus dem Institut für Pharmakognosie der Universität Graz

Mit 4 Abbildungen

(Eingegangen am 2. September 1964)

Es wird die Brauchbarkeit des Ansatzes von Musil—Breitenhuber zur Zerlegung von Totaldrucken in die Partialdrucke an Hand des binären Systems Wasser (1)/Aceton (3) gezeigt. Gleichzeitig wird durch numerische Integration nach Runge—Kutta für die untersuchten Temperaturen (100, 150 und 200°) die Zusammensetzung der Dampfphase genau bestimmt und mit den experimentell erhaltenen Werten verglichen. Diese weichen vor allem in Gebieten niederer Acetonkonzentrationen und bei 200° von den errechneten Werten mehr oder weniger ab.

Zur Bestimmung der Anfangswerte der numerischen Integration wird ein einfacher Kunstgriff angewendet und erläutert.

Die an den Parametern A und B des *Musil*schen Ansatzes anzubringenden Verbesserungen werden mit Hilfe des "verketteten *Gauß*schen Algorithmus" errechnet. Die Anwendung dieses Algorithmus wird kurz geschildert. Die erhaltenen Werte der Partialdrucke werden in den Abbildungen dargestellt und mit den experimentellen Werten verglichen.

In Fortsetzung der Untersuchung der drei dem Dreistoffsystem Wasser(1)/Phenol(2)/Aceton(3) zugrunde liegenden binären Systeme wird das System Wasser(1)/Aceton(3) im Temperaturbereich 100-200° rechnerisch überprüft. Für dieses System liegen Messungen der Dampf-

^{*} Herrn Prof. Dr. A. Musil zum 65. Geburtstag ergebenst gewidmet.

¹ 1. Mitt.: F. Gölles, Mh. Chem. **92**, 981 (1961), 2. Mitt.: F.Gölles, Mh. Chem. **93**, 191 (1962), 3. Mitt.: F. Gölles, Mh. Chem. **93**, 201 (1962), 4. Mitt.: F. Gölles, Mh. Chem. **94**, 1108 (1963).

zusammensetzung und der Totaldrucke für die genannten Temperaturen von *Griswold* und *Wong*² vor. Die Autoren errechneten aus ihren experimentell gefundenen Werten die Aktivitätskoeffizienten und nahmen auch die Realgaskorrektur vor.

Bei Betrachtung der experimentellen Werte fiel vor allem auf, daß in sehr verdünnter Lösung — die Autoren geben für die verschiedenen Temperaturen sehr verschiedene Konzentrationen an — die Aktivitätskoeffizienten einen gewissen unregelmäßigen Gang zeigen. Für 100 und 150° ist ein deutliches Maximum im Konzentrationsbereich von $x_3 = 0,00$ bis ca. 0,03 erkennbar. Diese Unregelmäßigkeit veranlaßte mich, den Musilschen Ansatz³ auf den Konzentrationsbereich 0,00—0,1 auszudehnen. Die erhaltenen Resultate finden sich in Abb. 1 für alle drei Temperaturen gezeichnet. Man sieht, daß im hochverdünnten Bereich nicht ohne weiters Ansätze zur Berechnung der Aktivitätskoeffizienten verwendet werden dürfen, sondern daß in jedem Falle eine Integration nach Runge—Kutta⁴ stattzufinden hat, will man ganz sicher gehen.

Um zu sicheren Ergebnissen für den ganzen Konzentrationsbereich zu gelangen und diese dann mit den Ansätzen nach *Musil* (l. c.) vergleichen zu können, wurde die numerische Integration zur Gänze durchgeführt, wobei sich im rechten Teil des Konzentrationsbereiches bei den Temperaturen 150 und 200° die bekannten Schwierigkeiten mit dem Auftreten der Azeotropie ergaben. Diese wurden umgangen, indem die Integration beider Seiten in Richtung steigender Konzentrationen (x_3 bzw. x_1) vorgenommen wurde.

Eine Schwierigkeit ergab sich bei der genauen Bestimmung der Zusammensetzung der Dampfphase im Bereich der unendlich verdünnten Lösung.

Der Nenner der Abelschen Differentialgleichung

$$y' = \frac{y(1-y)}{P(y-x)} \qquad \left(y' = \frac{\mathrm{d}y}{\mathrm{d}P}\right) \tag{1}$$

wird für x = y zu 0 - 0, also zu einer unbestimmten Form.

Wir können jedoch setzen

$$p_3 = P \cdot y = p_{03} \cdot x \cdot f_3 \text{ und } p_1 = P(1-y) = p_{01} \cdot (1-x) \cdot f_1 \quad (2)$$

Schreiben wir noch zur Vereinfachung \overline{y} statt 1 - y und \overline{x} statt 1 - x, so erhalten wir

$$\frac{p_3}{p_1} = \frac{y}{\bar{y}} = \frac{p_{03}}{p_{01}} \cdot \frac{x}{\bar{x}} \cdot \frac{f_3}{f_1}$$
(3)

² J. Griswold und S. Y. Wong, Chem. Energ. Progr. Symp., Ser. Nr. 3, 48; Minneapolis, 1952.

³ A. Musil und L. Breitenhuber, Allgem. Wärmetechnik 5, 103/8 (1954), Z. Elektrochem. 56, 10, 995 (1952).

⁴ C. Runge, Math. **46**, 167 (1895); W. Kutta, Z. Math. Phys. **46**, 435 (1901). Monatshefte für Chemie, Bd. 95/6 107 Da aber im sehr verdünnten Bereich $x_3 = 0,001 f_1$ mit 1 normiert werden kann, ergibt sich

Abb. 1. Verlauf der Aktivitätskoeffizienten des Systems Wasser (1)/Aceton (3) im Bereich sehr niedriger Acetonkonzentrationen. Maxima für 100° und 150°.

 f_3 ist der Grenzaktivitätskoeffizient des Acetons, den man in bekannter Weise durch Anwendung des Differenzenspiegels erhält. Aus Gl. (3a) läßt sich durch Umformung der Wert der Anfangskonzentration y berechnen.

Da die experimentellen Werte für die Totaldruckkurve in unregelmäßiger Aufeinanderfolge der Konzentrationen angegeben sind, erwies es sich als notwendig, die Kurven zu zeichnen und zwischen den einzelnen Intervallen eine quadratische Parabel nach dem Verfahren von Newton⁵ zu legen, und zwar stets so, daß die angegebenen experimentellen Werte als Stützstellen verwendet wurden. Hieraus ergab sich

Abb. 2. Partialdrucke p_3 des Acetons im Bereich sehr verdünnter Acetonkonzentrationen. E = experimentell gefundene Werte.

nun, wie die Abb. 2 zeigt ein regelmäßiger Verlauf der p_3 -Werte in Abhängigkeit von x_3 .

Da im Bereich der sehr niedrigen Acetonkonzentrationen nur wenige Meßpunkte bekannt sind, lassen sich auch keine eindeutigen Schlüsse ziehen, ob die experimentell gefundenen Werte, die — besonders für die Temperatur 200° — einen zu hohen Wert für die Aktivitätskoeffizienten

⁵ R. Zurmühl, Prakt. Mathematik, Springer (Berlin) 1963, S. 195ff.

bei $x_3 = 0,0022$ und auch $x_3 = 0,0182$ liefern, Meßfehlern bei der Bestimmung der Totaldrücke oder aber bei der Bestimmung von y zuzuschreiben sind.

Der Ansatz von *Musil* (l. c.) liefert gute Werte, schon in der ersten Näherung für die drei untersuchten Temperaturen. Zur Erlangung einer besseren Übersicht wurden statt natürlicher Logarithmen dekadische verwendet. In der einschlägigen thermodynamischen Literatur wurden und werden die Konstanten der verschiedenen Ansätze immer als dekadische Logarithmen der Grenzaktivitätskoeffizienten angegeben, so daß wir uns hier diesem Brauche anschließen.

Der Differenzenspiegel wurde in einer etwas genaueren Form dergestalt verwendet, daß nicht die ersten vier, sondern die ersten fünf äquidistanten Punkte der Totaldruckkurve zur Konstruktion der Näherungsparabeln verwendet wurden. Aus diesen Näherungsparabeln wird durch einfaches Bilden der ersten Ableitung P' und Verwendung der Formeln

$$A = \log \frac{P(1) - P'(1)}{P(0)} \quad \text{und} \quad B = \log \frac{P(0) + P'(0)}{P(1)}$$
(4)

der dekadische Logarithmus des jeweiligen Grenzaktivitätskoeffizienten gewonnen. Tab. 1 bringt die erhaltenen Werte und die aus ihnen errechneten Ausdrücke $1/\sqrt{A}$, $1/\sqrt{B}$, $\sqrt{B/A}$ und $\sqrt{A/B}$, die für den Ansatz von van Laar⁶ charakteristisch sind.

Tabelle 1. Reindrucke und Ableitungen an den beiden Enden des Konzentrationsbereiches

T	100°	150°	200°	
P (0)	1	4.7	15.86	
$\tilde{P}'(0)$	28,77	68,79	129,40	
P(1)	3,667	11,45	28,00	
P'(1)	- 0,033	2,708		
$A = \lim \log f_1$	0,5682	0,4804	0,3995	
$B = \lim_{x_3 \to 0} \log f_3$	0,9095	0,8056	0,71499	
$1/\sqrt{A}$	1,326	1,442	1,582	
$1/\sqrt{B}$	1,048	1,114	1,183	
$\sqrt{B/A}$	1,678	1,869	2,115	
$\sqrt{A/B}$	0,830	0,862	0,884	

⁶ J. J. van Laar, Z. physik. Chem. A 137, 421 (1928).

Die Werte von A und B wurden nun gegen den Kehrwert der absoluten Temperatur T aufgetragen. Sie ergeben, nach $Gau\beta^7$ ausgeglichen, Gerade mit den Gleichungen

$$B = 0,0025 + 0,3384 \cdot \frac{10^3}{T}$$

$$A = 0,2188 + 0,295 \cdot \frac{10^2}{T}$$
(5)

Die lineare Temperaturabhängigkeit von A und B setzt uns in die Lage, für jede beliebige Zwischentemperatur im Intervall von 100 bis

Abb. 3a-c. Vollständiges Diagramm der Total- und Partialdrucke des Systems Wasser (1)/Aceton (3), Näherungen nach Musil. E = experimentell gefundene Werte.

 $a = 100^{\circ}$,

⁷ R. Zurmühl⁵, S. 98.

 200° Aktivitätskoeffizienten, Partialdrucke und thermodynamische Funktionen zu berechnen.

Abb. 3 b. 150°.

Abb. 3 a, b und c zeigen die Totaldruck- und Partialdruckkurven für die drei untersuchten Temperaturen. Die von den Autoren experimentell erhaltenen Werte sind durch ein beigesetztes E gekennzeichnet. Abb. 4 bringt die Zusammensetzung der Dampfphase in Abhängigkeit von x_3 . Die Berechnung der Parameter der zweiten Näherung erfolgte mit Hilfe des "verketteten $Gau\beta$ schen Algorithmus"⁷. Dieser bietet den

großen Vorteil, alle Rechenoperationen und Proben in einer Tabelle vornehmen zu können. Tab. 2 bringt als Musterbeispiel die Berechnung für den Temperaturwert 200°.

Geht man vom Gleichungssystem

$$a_{11}\xi_1 + a_{12}\xi_2 = a_1$$

$$a_{21}\xi_1 + a_{22}\xi_2 = a_2$$
(6)

aus, so lassen sich die einzelnen Zahlen der zweiten Reduktionsstufe durch folgende Operationen aus den Koeffizienten der Unbekannten herleiten

$$c_{21} = a_{21} : b_{22} \qquad b_{21} = a_{21} - c_{21} \cdot b_{12}$$

$$b_2 = a_2 - c_{21} \cdot b_1 \qquad t_2 = s_2 - c_{21} \cdot t_1 \qquad (7)$$

$$\tau_2 = (\sigma_2 - \tau_1 \, b_{12}) : b_{22}$$

Die Unbekannten errechnen sich schließlich zu

$$\xi_2 = \frac{b_2}{b_{22}}$$
 und $\xi_1 = \frac{-b_1 + b_{12} \cdot \xi_2}{-b_{11}}$ (8)

Die Verprobung erfolgt durch Einsetzen in die Fehlergleichungen.

Abb. 4. Konzentration der Dampfphase y des Systems Wasser (1)/Aceton (3) in Abhängigkeit von der Konzentration x_5 des Acetons in der wässerigen Phase. Man beachte die Annäherung an die Raoultsche Gerade mit zunehmender Temperatur!

H. 6/1964] Zur Ermittlung thermodynamischer Daten

Die mittleren Fehler der Unbekannten errechnen sich nach den Formeln

$$m = \sqrt{\frac{[vv]}{n-2}}, \qquad m_{\xi_1} = m \cdot \frac{1}{\sqrt{b_{11}}} \qquad (9)$$
$$m_{\xi_2} = m \cdot \frac{1}{\sqrt{b_{22}}}$$

Tabelle 2. Schema des "verketteten $Gau\beta$ schen Algorithmus" für 200°C

σ ₂	σ	s	221,89	236,72	14,999	
a ₁₂	a1	<i>s</i> ₁	121	100,89	6,764	
a_{22}	a_2	s_2	100,89	135,83	3,235	
b_{12}	b_1	t_1	121	100,89	-6,764	
22	b_2	t_2		51,79		
2	0	0	1,833	-1	0	
2			-0,01412	-0,0501	.5	

Koeffizienten der Gaußschen Fehlergleichungen für 100 und 150°

	a11	<i>a</i> ₁₂	a22	aı	<i>a</i> 2
100° 150°	$\begin{array}{c} 2788\\ 23 \end{array}$	$530,4 \\ 17,45$	$\begin{array}{r} 2913\\ 24,46 \end{array}$	309 1,258	$\begin{array}{c} 35,6 \\ 0,700 \end{array}$

Tabelle 3. Verbesserungen, mittlere Fehler und Parameter der zweiten Näherung für 100, 150 und 200°

	ξĵ	ξ ₂	m	m_{ξ_1}	m_{ξ_2}	Å	₿
100° 150° 200°	$\begin{array}{c} & 0,0386 \\ & 0,031 \\ & 0,00607 \end{array}$	-0,0210 + 0,0098 0,0216	0,081 0,102 0,099	$0,03 \\ 0,014 \\ 0,009$	0,03 0,021 0,0137	0,5296 0,4495 0,393	0,8885 0,8154 0,693

Anmerkung: Sämtliche hier erhaltenen Resultate sind auf dekadische Logarithmen umgerechnet!

Die errechneten Werte sind in der Tab. 3 zusammengestellt. Die Größenordnung der Verbesserungen stimmt mit der der mittleren Fehler überein, so daß weitere Ausgleichschritte nicht mehr notwendig sind. Die Bedeutung des Ansatzes von *Musil* liegt ja gerade darin, daß für die meisten Zwecke genügend genaue Näherungswerte im Bereich von x = 0,1 bis etwa 0,9 erhalten werden. In den Bereichen der sehr verdünnten Lösung findet man jedoch mit dem Ansatz nicht das Auslangen, so daß in diesen Bereichen die Integration durchgeführt werden muß. Sie liefert aber auch dann genaue Werte und Aufschluß über die Verhältnisse im Bereich hoher Verdünnung. Die in Tab. 2 angeführten Werte der Konstanten des Ansatzes von van Laar liefern gute Näherungswerte, doch soll hier, da dieser Ansatz gegenüber dem von *Musil* keine Vorteile bietet, nicht näher darauf eingegangen werden.